В 2018 году Python укрепил свои позиции популярности среди программистов и вошел в Top 3 самых популярных языков на github. Все больше и больше людей переходит на светлую сторону…то есть Python. Появилось еще большее количество разработчиков, которые интересуются данным языком и ведут разработку своих проектов с его помощью. Одним из популярных направлений для Python является web‑разработка. Хочется, чтобы не только процесс разработки был удобным и быстрым, но и сами проекты могли похвастаться скоростью и стабильностью работы.
Python имеет множество фреймворков, которые избавляют программиста от рутинных операций и позволяют сосредоточиться на решении задач. В 2018 году обновились существующие фреймворки и появились новые инструменты.
Поэтому мы решили составить сравнительный анализ популярных фреймворков, которые не потеряют, мы надеемся, своей актуальности на протяжении всего 2019 года и определить самый быстрый из них.
Участники тестирования
Django
Версия: 2.1.4
Описание: самый популярный комбайн для Python, который из коробки решает множество проблем (админка, авторизация, логирование, ORM, и т.д). Это упрощает жизнь разработчика, но если мы ставим в приоритет скорость работы — то иногда такой комбайн играет против нас и это сказывается на производительности. По этой причине номинацию Fastest Python Web Framework in 2019 он скорее всего не возьмет.
Flask
Версия: 1.0.2
Описание: самый популярный фреймворк на Python (по звездам в GitHub обгоняет даже Django). Популярный выбор в случаях разработки мелких проектов, для которых не нужны те плюшки, которые есть в Django. Позволяет быстро развернуть приложение. Возможно быстрее чем Django по скорости работы, но имеет очень маленькую функциональность “из коробки”.
AioHTTP
Версия: 3.5.1
Описание: очень привлекательный асинхронный Python Framework. Имеет версию клиента и сервера, что значительно развязывает руки при разработке. Обладает очень удобными асинхронными запросами с версии клиента, а также очень хорошие показатели скорости работы сервера при большом количество запросов. Точно должен попасть в тройку лидеров.
Sanic
Версия: 18.12
Описание: можно сказать, что это “многопоточный Flask” со всеми вытекающими. По этой причине мы думаем, что результаты должны быть очень хороши.
Tornado
Версия: 5.1.1
Описание: асинхронный ветеран Python движения, задавший тренд асинхронности в 2010 году. Не теряет своей актуальности и получил 5ю версию в 2018 году. Достаточно высокий порог входа для новичков. Популярен среди олдскульных питонистов, и мы думаем не зря. Должен показать хорошие результаты.
Vibora
Тестируемая версия: релизов на GitHub нет
Описание: многообещающий фреймворк, появившийся в июне 2018 и за последнии полгода набравший более 4000 звезд. Имеет впечатляющие замеры производительности в GitHub. Мы думали именно Vibora станет фаворитом нашей гонки, но к сожалению из-за отсутствия возможности запуска под Python >=3.7 и отсутствия стабильной версии фреймворка мы исключили Vibora.
В GitHub разработчики обещают “кардинально новый” Vibora уже скоро. Посмотрим, что у них получится и обязательно напишем об этом.
Методика тестирования
Тестирование проводилось на Apple iMac 27» Retina 5K 2017, CPU: 3.5GHz i5, RAM: 8GB, 1000GB Fusion Drive, OSX 10.14.2 при помощи утилиты WRK:
wrk -t12 -c400 -d30s http://127.0.0.1:8080/db/
Тесты проводились на Python 3.7.2. Все фреймворки запускались при помощи Gunicorn с двумя воркерами. Возможно в каких-то случаях использование uwsgi сказалось бы на результатах, но так как мы поставили цель тестировать фреймворки, а не способы их запуска — решили этим пренебречь.
У нас был всего один вид тестов: DB Test, в котором мы получаем строковые данные из базы данных и возвращаем их в виде html-ответа (1 запись в 79 bytes). В качестве базы данных использовался Postgres 11. В качестве драйвера обращений к базе использовался psycopg2 в случае синхронных фреймворков и asyncpg в случае асинхронных.
В качестве event loop библиотеки для асинхронных фреймворков решили использовать uvloop.
Результаты
Запросов в секунду
Вполне ожидаемые лидирующие позиции aiohttp и Sanic, но неожиданные результаты от Tornado.
Передача данных в секунду (Кб)
По количеству переданных данных в секунду Django сильно отстает.
Среднее время запроса (мс)
Снова неприятно удивляет Tornado, на который мы изначально делали ставку. Впечатляет Flask, который по среднему времени запроса конкурирует с потенциальными лидерами.
Максимальное время запроса (сек)
Все “подопытные” показали практически одинаковые результаты по максимальному времени запроса. Все, как мы и ожидали.
Финальные результаты
12 threads 400 connections |
Avg | Max | Requests/sec | Transfer/sec (KB) | ||
Latency (ms) | Req/Sec | Latency (ms) | Req/Sec | |||
Django | 147,99 | 120,91 | 1,98 | 640 | 425,71 | 78,99 |
Flask | 186,8 | 65,65 | 1,75 | 280 | 546,2 | 127,48 |
aiohttp | 165,07 | 247,16 | 1,98 | 585 | 1966,28 | 439,72 |
Sanic | 194,8 | 170,85 | 1,98 | 470 | 1520,9 | 292,6 |
Tornado | 279,3 | 101,71 | 1,74 | 272 | 778,75 | 222,07 |
Итоги
Aiohttp: лидер по производительности на начало 2019 года. Если ваша задача требует ультимативной производительности — то стоит к нему присмотреться. К тому же можно поэкспериментировать с параметрами запуска Aiohttp, чтобы выжать из него еще больше. Имеет версию клиента, что позволяет без дополнительных библиотек делать асинхронные запросы. Поэтому для реализации своего нового высоконагруженного сервиса мы выбрали его.
Sanic: популярность фреймворка идет впереди его производительности. Чуда не случилось и обогнать лидера не вышло. В совокупности с тредом на Reddit о проблемах c безопасностью — мы бы не стали использовать Sanic прямо сейчас и подождали действий от разработчиков.
Tornado: “разочарование года”. В связи с результатами — не думаем, что Tornado стоит выбирать для реализации каких-либо новых проектов. Надеемся разработчики что-нибудь придумают и исправят ситуацию.
Django показал ожидаемый результат. Мы любим Django за его возможности и избавление нас от рутины, а не за скорость работы. Обширное community, большое количество материалов в Сети, большое количество реализованных проектов в открытом доступе — все это делает его привлекательным для новичков. Если бы у нас стояла задача быстро разработать MVP типичного web-сервиса — мы бы выбрали в 2019 именно его.
Flask тоже показал ожидаемый результат. Обошел Django за счет того, что имеет не такой богатый функционал из коробки. Не дотянул до скорости асинхронных фреймворков. Мы бы выбрали его в 2019 для реализации небольших pet-проектов или тогда, когда уже важна скорость, но разбираться с асинхронными фреймворками желания еще нет.
Все исходные файлы бенчмарков вы можете посмотреть в репозитории Python Frameworks Benchmark.
Оригинал на Habr