Здесь хранилище коротких сладких примеров и ссылок на полезные рецепты Pandas. Настоятельно рекомендую освоить для эффективного решения реальных задач, а в комментарии делиться своим опытом python-нинга и добавлять свои «фишки».

Простые, компактные, предназначенные специально для новичков примеры Jupytor Notebook‑кода, отобранные по популярности на Stack Overflow и GitHub. Многие ссылки приводят к полной и исчерпывающей информации по теме примеров.

Для выполнения приведённых скриптов используются только 2 (два) пакета — Pandas(pd) и Numpy (np). Смело загружайте IDLE Python и записывайте код, приведенный после In [ХХХ]:

Всё сделано на Python 3.6.8, а в других версиях могут потребоваться незначительные настройки.

Идиомы   

Идиома (программирование) — устойчивый способ выражения некоторой составной конструкции в одном или нескольких языках программирования. Идиома является шаблоном решения задачи, записи алгоритма или структуры данных путём комбинирования встроенных элементов языка.

Здесь несколько аккуратных идиом pandas.

if-then / if-then-else для одного столбца и переназначение его другому или нескольким столбцам:

In [1]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ...:                    'BBB': [10, 20, 30, 40],
   ...:                    'CCC': [100, 50, -30, -50]})
   ...: 

In [2]: df
Out[2]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

if-then…

if-then для одной колонки

In [3]: df.loc[df.AAA >= 5, 'BBB'] = -1

In [4]: df
Out[4]: 
   AAA  BBB  CCC
0    4   10  100
1    5   -1   50
2    6   -1  -30
3    7   -1  -50

If-then с присвоением 2 столбцам:

In [5]: df.loc[df.AAA >= 5, ['BBB', 'CCC']] = 555

In [6]: df
Out[6]: 
   AAA  BBB  CCC
0    4   10  100
1    5  555  555
2    6  555  555
3    7  555  555

… добавьте еще одну строку с описанием логики для реализации -else

In [7]: df.loc[df.AAA < 5, ['BBB', 'CCC']] = 2000

In [8]: df
Out[8]: 
   AAA   BBB   CCC
0    4  2000  2000
1    5   555   555
2    6   555   555
3    7   555   555

… или используйте pandas после создании маски

In [9]: df_mask = pd.DataFrame({'AAA': [True] * 4,
   ...:                         'BBB': [False] * 4,
   ...:                         'CCC': [True, False] * 2})
   ...: 

In [10]: df.where(df_mask, -1000)
Out[10]: 
   AAA   BBB   CCC
0    4 -1000  2000
1    5 -1000 -1000
2    6 -1000   555
3    7 -1000 -1000

if-then-else, используя where() из numpy

In [11]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ....:                    'BBB': [10, 20, 30, 40],
   ....:                    'CCC': [100, 50, -30, -50]})
   ....: 

In [12]: df
Out[12]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [13]: df['logic'] = np.where(df['AAA'] > 5, 'high', 'low')

In [14]: df
Out[14]: 
   AAA  BBB  CCC logic
0    4   10  100   low
1    5   20   50   low
2    6   30  -30  high
3    7   40  -50  high

Разделение   

Разделение фрейма по логическим критериям

In [15]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ....:                    'BBB': [10, 20, 30, 40],
   ....:                    'CCC': [100, 50, -30, -50]})
   ....: 

In [16]: df
Out[16]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [17]: df[df.AAA <= 5]
Out[17]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50

In [18]: df[df.AAA > 5]
Out[18]: 
   AAA  BBB  CCC
2    6   30  -30
3    7   40  -50

Конструкции сложных критериев   

Отбор данных из нескольких столбцов по комплексным критериям

In [19]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ....:                    'BBB': [10, 20, 30, 40],
   ....:                    'CCC': [100, 50, -30, -50]})
   ....: 

In [20]: df
Out[20]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

…и (без использования объекта Series в качестве возвращаемого значения)

In [21]: df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']
Out[21]: 
0    4
1    5
Name: AAA, dtype: int64

…или так (без использования объекта Series в качестве возвращаемого значения)

In [22]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']
Out[22]: 
0    4
1    5
2    6
3    7
Name: AAA, dtype: int64

…и (с модификацией объекта DataFrame)

In [23]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1

In [24]: df
Out[24]: 
   AAA  BBB  CCC
0  0.1   10  100
1  5.0   20   50
2  0.1   30  -30
3  0.1   40  -50

Выберите строки с данными, ближайшими к определенному значению с использованием argsort

In [25]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ....:                    'BBB': [10, 20, 30, 40],
   ....:                    'CCC': [100, 50, -30, -50]})
   ....: 

In [26]: df
Out[26]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [27]: aValue = 43.0

In [28]: df.loc[(df.CCC - aValue).abs().argsort()]
Out[28]: 
   AAA  BBB  CCC
1    5   20   50
0    4   10  100
2    6   30  -30
3    7   40  -50

Динамическое сокращение списка критериев с помощью бинарных операторов

In [29]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ....:                    'BBB': [10, 20, 30, 40],
   ....:                    'CCC': [100, 50, -30, -50]})
   ....: 

In [30]: df
Out[30]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [31]: Crit1 = df.AAA <= 5.5

In [32]: Crit2 = df.BBB == 10.0

In [33]: Crit3 = df.CCC > -40.0

Можно использовать составной код:

In [34]: AllCrit = Crit1 & Crit2 & Crit3

… или использовать динамически построенные списки критериев

In [35]: import functools

In [36]: CritList = [Crit1, Crit2, Crit3]

In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)

In [38]: df[AllCrit]
Out[38]: 
   AAA  BBB  CCC
0    4   10  100

Отбор   

Фреймы данных   

Документация по индексированию находится здесь.

Использование меток строк и условных значений

In [39]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ....:                    'BBB': [10, 20, 30, 40],
   ....:                    'CCC': [100, 50, -30, -50]})
   ....: 

In [40]: df
Out[40]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
Out[41]: 
   AAA  BBB  CCC
0    4   10  100
2    6   30  -30

Используйте loc для нарезки по меткам и iloc для позиционной нарезки

In [42]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ....:                    'BBB': [10, 20, 30, 40],
   ....:                    'CCC': [100, 50, -30, -50]},
   ....:                   index=['foo', 'bar', 'boo', 'kar'])
   ....: 

Есть два метода нарезки и третий общий вариант.

  1. Позиционно-ориентированный (стиль нарезки Python: исключая end).
  2. Ориентированный на метки (стиль нарезки Python: включая end).
  3. Общие (любой стиль нарезки: зависит от того, содержит ли срез метки или позиции).
In [43]: df.loc['bar':'kar']  # Label
Out[43]: 
     AAA  BBB  CCC
bar    5   20   50
boo    6   30  -30
kar    7   40  -50

# Generic
In [44]: df.iloc[0:3]
Out[44]: 
     AAA  BBB  CCC
foo    4   10  100
bar    5   20   50
boo    6   30  -30

In [45]: df.loc['bar':'kar']
Out[45]: 
     AAA  BBB  CCC
bar    5   20   50
boo    6   30  -30
kar    7   40  -50

Если индекс целое число, то при начальном значением индекса, отличным от 0, или его приращением, отличным от 1, возникает неопределенность.

In [46]: data = {'AAA': [4, 5, 6, 7],
   ....:         'BBB': [10, 20, 30, 40],
   ....:         'CCC': [100, 50, -30, -50]}
   ....: 

In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4])  # Note index starts at 1.

In [48]: df2.iloc[1:3]  # Position-oriented
Out[48]: 
   AAA  BBB  CCC
2    5   20   50
3    6   30  -30

In [49]: df2.loc[1:3]  # Label-oriented
Out[49]: 
   AAA  BBB  CCC
1    4   10  100
2    5   20   50
3    6   30  -30

Использование оператора инверсии (~) для дополнения маски

In [50]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   ....:                    'BBB': [10, 20, 30, 40],
   ....:                    'CCC': [100, 50, -30, -50]})
   ....: 

In [51]: df
Out[51]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
Out[52]: 
   AAA  BBB  CCC
1    5   20   50
3    7   40  -50

Новые колонки   

Эффективное и динамическое создание новых столбцов с использованием applymap

In [53]: df = pd.DataFrame({'AAA': [1, 2, 1, 3],
   ....:                    'BBB': [1, 1, 2, 2],
   ....:                    'CCC': [2, 1, 3, 1]})
   ....: 

In [54]: df
Out[54]: 
   AAA  BBB  CCC
0    1    1    2
1    2    1    1
2    1    2    3
3    3    2    1

In [55]: source_cols = df.columns   # Or some subset would work too

In [56]: new_cols = [str(x) + "_cat" for x in source_cols]

In [57]: categories = {1: 'Alpha', 2: 'Beta', 3: 'Charlie'}

In [58]: df[new_cols] = df[source_cols].applymap(categories.get)

In [59]: df
Out[59]: 
   AAA  BBB  CCC  AAA_cat BBB_cat  CCC_cat
0    1    1    2    Alpha   Alpha     Beta
1    2    1    1     Beta   Alpha    Alpha
2    1    2    3    Alpha    Beta  Charlie
3    3    2    1  Charlie    Beta    Alpha

Сохранение столбцов, используя функцию min() с group by

In [60]: df = pd.DataFrame({'AAA': [1, 1, 1, 2, 2, 2, 3, 3],
   ....:                    'BBB': [2, 1, 3, 4, 5, 1, 2, 3]})
   ....: 

In [61]: df
Out[61]: 
   AAA  BBB
0    1    2
1    1    1
2    1    3
3    2    4
4    2    5
5    2    1
6    3    2
7    3    3

Способ 1: idxmin() для получения индексов минимумов

In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[62]: 
   AAA  BBB
1    1    1
5    2    1
6    3    2

Способ 2: сортировка, а затем получение первого

In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[63]: 
   AAA  BBB
0    1    1
1    2    1
2    3    2

Обратите внимание на одинаковые результаты, за исключением индекса.

Мульти-индексация   

Полная документация по мульти-индексации находится здесь.

Создание мульти-индекса по меткам фрейма

In [64]: df = pd.DataFrame({'row': [0, 1, 2],
   ....:                    'One_X': [1.1, 1.1, 1.1],
   ....:                    'One_Y': [1.2, 1.2, 1.2],
   ....:                    'Two_X': [1.11, 1.11, 1.11],
   ....:                    'Two_Y': [1.22, 1.22, 1.22]})
   ....: 

In [65]: df
Out[65]: 
   row  One_X  One_Y  Two_X  Two_Y
0    0    1.1    1.2   1.11   1.22
1    1    1.1    1.2   1.11   1.22
2    2    1.1    1.2   1.11   1.22

# As Labelled Index
In [66]: df = df.set_index('row')

In [67]: df
Out[67]: 
     One_X  One_Y  Two_X  Two_Y
row                            
0      1.1    1.2   1.11   1.22
1      1.1    1.2   1.11   1.22
2      1.1    1.2   1.11   1.22

# With Hierarchical Columns
In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_'))
   ....:                                         for c in df.columns])
   ....: 

In [69]: df
Out[69]: 
     One        Two      
       X    Y     X     Y
row                      
0    1.1  1.2  1.11  1.22
1    1.1  1.2  1.11  1.22
2    1.1  1.2  1.11  1.22

# Now stack & Reset
In [70]: df = df.stack(0).reset_index(1)

In [71]: df
Out[71]: 
    level_1     X     Y
row                    
0       One  1.10  1.20
0       Two  1.11  1.22
1       One  1.10  1.20
1       Two  1.11  1.22
2       One  1.10  1.20
2       Two  1.11  1.22

# And fix the labels (Notice the label 'level_1' got added automatically)
In [72]: df.columns = ['Sample', 'All_X', 'All_Y']

In [73]: df
Out[73]: 
    Sample  All_X  All_Y
row                     
0      One   1.10   1.20
0      Two   1.11   1.22
1      One   1.10   1.20
1      Two   1.11   1.22
2      One   1.10   1.20
2      Two   1.11   1.22

Арифметика   

Выполнение арифметики с мульти-индексом для поиска

In [74]: cols = pd.MultiIndex.from_tuples([(x, y) for x in ['A', 'B', 'C']
   ....:                                   for y in ['O', 'I']])
   ....: 

In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=['n', 'm'], columns=cols)

In [76]: df
Out[76]: 
          A                   B                   C          
          O         I         O         I         O         I
n  0.469112 -0.282863 -1.509059 -1.135632  1.212112 -0.173215
m  0.119209 -1.044236 -0.861849 -2.104569 -0.494929  1.071804

In [77]: df = df.div(df['C'], level=1)

In [78]: df
Out[78]: 
          A                   B              C     
          O         I         O         I    O    I
n  0.387021  1.633022 -1.244983  6.556214  1.0  1.0
m -0.240860 -0.974279  1.741358 -1.963577  1.0  1.0

Нарезка   

Нарезка мульти-индекса с xs

In [79]: coords = [('AA', 'one'), ('AA', 'six'), ('BB', 'one'), ('BB', 'two'),
   ....:           ('BB', 'six')]
   ....: 

In [80]: index = pd.MultiIndex.from_tuples(coords)

In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ['MyData'])

In [82]: df
Out[82]: 
        MyData
AA one      11
   six      22
BB one      33
   two      44
   six      55

Для вычисления сечения 1-го уровня и 1-й оси указателя:

# Примечание: уровень и ось являются необязательными и по умолчанию равны нулю
In [83]: df.xs('BB', level=0, axis=0)
Out[83]: 
     MyData
one      33
two      44
six      55

… и теперь 2-й уровень 1-й оси.

In [84]: df.xs('six', level=1, axis=0)
Out[84]: 
    MyData
AA      22
BB      55

Нарезка мульти-индекса с помощью xs, метод №2

In [85]: import itertools

In [86]: index = list(itertools.product(['Ada', 'Quinn', 'Violet'],
   ....:                                ['Comp', 'Math', 'Sci']))
   ....: 

In [87]: headr = list(itertools.product(['Exams', 'Labs'], ['I', 'II']))

In [88]: indx = pd.MultiIndex.from_tuples(index, names=['Student', 'Course'])

In [89]: cols = pd.MultiIndex.from_tuples(headr)   # Notice these are un-named

In [90]: data =  df = pd.DataFrame(data, indx, cols)

In [92].transform(sum).sort_values(by='data')

In [123]: sorted_df = df.loc[agg_n_sort_order.index]

In [124]: sorted_df
Out[124]: 
  code  data   flag
1  bar -0.21   True
4  bar -0.59  False
0  foo  0.16  False
3  foo  0.45   True
2  baz  0.33  False
5  baz  0.62   True

Создание нескольких агрегированных столбцов

In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq='2min')

In [126]: ts = pd.Series(data=list(range(10)), index=rng)

In [127]: def MyCust(x):
   .....:     if len(x) > 2:
   .....:         return x[1] * 1.234
   .....:     return pd.NaT
   .....: 

In [128]: mhc = {'Mean': np.mean, 'Max': np.max, 'Custom': MyCust}

In [129]: ts.resample("5min").apply(mhc)
Out[129]: 
Mean    2014-10-07 00:00:00        1
        2014-10-07 00:05:00      3.5
        2014-10-07 00:10:00        6
        2014-10-07 00:15:00      8.5
Max     2014-10-07 00:00:00        2
        2014-10-07 00:05:00        4
        2014-10-07 00:10:00        7
        2014-10-07 00:15:00        9
Custom  2014-10-07 00:00:00    1.234
        2014-10-07 00:05:00      NaT
        2014-10-07 00:10:00    7.404
        2014-10-07 00:15:00      NaT
dtype: object

In [130]: ts
Out[130]: 
2014-10-07 00:00:00    0
2014-10-07 00:02:00    1
2014-10-07 00:04:00    2
2014-10-07 00:06:00    3
2014-10-07 00:08:00    4
2014-10-07 00:10:00    5
2014-10-07 00:12:00    6
2014-10-07 00:14:00    7
2014-10-07 00:16:00    8
2014-10-07 00:18:00    9
Freq: 2T, dtype: int64

Создание столбца и переназначение его во фрейме данных.

In [131]: df = pd.DataFrame({'Color': 'Red Red Red Blue'.split(),
   .....:                    'Value': [100, 150, 50, 50]})
   .....: 

In [132]: df
Out[132]: 
  Color  Value
0   Red    100
1   Red    150
2   Red     50
3  Blue     50

In [133]: df['Counts'] = df.groupby(['Color']).transform(len)

In [134]: df
Out[134]: 
  Color  Value  Counts
0   Red    100       3
1   Red    150       3
2   Red     50       3
3  Blue     50       1

Сдвиг групп значений в столбце на основе индекса

In [135]: df = pd.DataFrame({'line_race': [10, 10, 8, 10, 10, 8],
   .....:                    'beyer': [99, 102, 103, 103, 88, 100]},
   .....:                   index=['Last Gunfighter', 'Last Gunfighter',
   .....:                          'Last Gunfighter', 'Paynter', 'Paynter',
   .....:                          'Paynter'])
   .....: 

In [136]: df
Out[136]: 
                 line_race  beyer
Last Gunfighter         10     99
Last Gunfighter         10    102
Last Gunfighter          8    103
Paynter                 10    103
Paynter                 10     88
Paynter                  8    100

In [137]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)

In [138]: df
Out[138]: 
                 line_race  beyer  beyer_shifted
Last Gunfighter         10     99            NaN
Last Gunfighter         10    102           99.0
Last Gunfighter          8    103          102.0
Paynter                 10    103            NaN
Paynter                 10     88          103.0
Paynter                  8    100           88.0

Выбор строки с максимальным значением из каждой группы

In [139]: df = pd.DataFrame({'host': ['other', 'other', 'that', 'this', 'this'],
   .....:                    'service': ['mail', 'web', 'mail', 'mail', 'web'],
   .....:                    'no': [1, 2, 1, 2, 1]}).set_index(['host', 'service'])
   .....: 

In [140]: mask = df.groupby(level=0).agg('idxmax')

In [141]: df_count = df.loc[mask['no']].reset_index()

In [142]: df_count
Out[142]: 
    host service  no
0  other     web   2
1   that    mail   1
2   this    mail   2

Группировка как в Python itertools.groupby

In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=['A'])

In [144]: df.A.groupby((df.A != df.A.shift()).cumsum()).groups
Out[144]: 
{1: Int64Index([0], dtype='int64'),
 2: Int64Index([1], dtype='int64'),
 3: Int64Index([2], dtype='int64'),
 4: Int64Index([3, 4, 5], dtype='int64'),
 5: Int64Index([6], dtype='int64'),
 6: Int64Index([7, 8], dtype='int64')}

In [145]: df.A.groupby((df.A != df.A.shift()).cumsum()).cumsum()
Out[145]: 
0    0
1    1
2    0
3    1
4    2
5    3
6    0
7    1
8    2
Name: A, dtype: int64

Расщепление   

Расщепление фрейма

Создание списка фреймов при разделении на основе логики, включенной в строки.

In [146]: df = pd.DataFrame(data={'Case': ['A', 'A', 'A', 'B', 'A', 'A', 'B', 'A',
   .....:                                  'A'],
   .....:                         'Data': np.random.randn(9)})
   .....: 

In [147]: dfs = list(zip(*df.groupby((1 * (df['Case'] == 'B')).cumsum()
   .....:                .rolling(window=3, min_periods=1).median())))[-1]
   .....: 

In [148]: dfs[0]
Out[148]: 
  Case      Data
0    A  0.276232
1    A -1.087401
2    A -0.673690
3    B  0.113648

In [149]: dfs[1]
Out[149]: 
  Case      Data
4    A -1.478427
5    A  0.524988
6    B  0.404705

In [150]: dfs[2]
Out[150]: 
  Case      Data
7    A  0.577046
8    A -1.715002

Вращение

Полная документация по вращению находится здесь.

Частичные суммы и промежуточные итоги

In [151]: df = pd.DataFrame(data={'Province': ['ON', 'QC', 'BC', 'AL', 'AL', 'MN', 'ON'],
   .....:                         'City': ['Toronto', 'Montreal', 'Vancouver',
   .....:                                  'Calgary', 'Edmonton', 'Winnipeg',
   .....:                                  'Windsor'],
   .....:                         'Sales': [13, 6, 16, 8, 4, 3, 1]})
   .....: 

In [152]: table = pd.pivot_table(df, values=['Sales'], index=['Province'],
   .....:                        columns=['City'], aggfunc=np.sum, margins=True)
   .....: 

In [153]: table.stack('City')
Out[153]: 
                    Sales
Province City            
AL       All         12.0
         Calgary      8.0
         Edmonton     4.0
BC       All         16.0
         Vancouver   16.0
...                   ...
All      Montreal     6.0
         Toronto     13.0
         Vancouver   16.0
         Windsor      1.0
         Winnipeg     3.0

[20 rows x 1 columns]

Таблица частот типа plyr в R

In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78]

In [155]: df = pd.DataFrame({'ID': ["x%d" % r for r in range(10)],
   .....:                    'Gender': ['F', 'M', 'F', 'M', 'F',
   .....:                               'M', 'F', 'M', 'M', 'M'],
   .....:                    'ExamYear': ['2007', '2007', '2007', '2008', '2008',
   .....:                                 '2008', '2008', '2009', '2009', '2009'],
   .....:                    'Class': ['algebra', 'stats', 'bio', 'algebra',
   .....:                              'algebra', 'stats', 'stats', 'algebra',
   .....:                              'bio', 'bio'],
   .....:                    'Participated': ['yes', 'yes', 'yes', 'yes', 'no',
   .....:                                     'yes', 'yes', 'yes', 'yes', 'yes'],
   .....:                    'Passed': ['yes' if x > 50 else 'no' for x in grades],
   .....:                    'Employed': [True, True, True, False,
   .....:                                 False, False, False, True, True, False],
   .....:                    'Grade': grades})
   .....: 

In [156]: df.groupby('ExamYear').agg({'Participated': lambda x: x.value_counts()['yes'],
   .....:                             'Passed': lambda x: sum(x == 'yes'),
   .....:                             'Employed': lambda x: sum(x),
   .....:                             'Grade': lambda x: sum(x) / len(x)})
   .....: 
Out[156]: 
          Participated  Passed  Employed      Grade
ExamYear                                           
2007                 3       2         3  74.000000
2008                 3       3         0  68.500000
2009                 3       2         2  60.666667

Отображение фрейма pandas с данными за год

Для создания перекрестных таблиц по годам и месяцам:

In [157]: df = pd.DataFrame({'value': np.random.randn(36)},
   .....:                   index=pd.date_range('2011-01-01', freq='M', periods=36))
   .....: 

In [158]: pd.pivot_table(df, index=df.index.month, columns=df.index.year,
   .....:                values='value', aggfunc='sum')
   .....: 
Out[158]: 
        2011      2012      2013
1  -1.039268 -0.968914  2.565646
2  -0.370647 -1.294524  1.431256
3  -1.157892  0.413738  1.340309
4  -1.344312  0.276662 -1.170299
5   0.844885 -0.472035 -0.226169
6   1.075770 -0.013960  0.410835
7  -0.109050 -0.362543  0.813850
8   1.643563 -0.006154  0.132003
9  -1.469388 -0.923061 -0.827317
10  0.357021  0.895717 -0.076467
11 -0.674600  0.805244 -1.187678
12 -1.776904 -1.206412  1.130127

Применение   

Скользящее применение, чтобы организовать — Превращение встроенных списков во фрейм MultiIndex

In [159]: df = pd.DataFrame(data={'A': 2, 4, 8, 16], [100, 200], [10, 20, 30,
   .....:                         'B': 'a', 'b', 'c'], ['jj', 'kk'], ['ccc'},
   .....:                   index=['I', 'II', 'III'])
   .....: 

In [160]: def SeriesFromSubList(aList):
   .....:     return pd.Series(aList)
   .....: 

In [161]: df_orgz = pd.concat({ind: row.apply(SeriesFromSubList)
   .....:                      for ind, row in df.iterrows()})
   .....: 

In [162]: df_orgz
Out[162]: 
         0    1    2     3
I   A    2    4    8  16.0
    B    a    b    c   NaN
II  A  100  200  NaN   NaN
    B   jj   kk  NaN   NaN
III A   10   20   30   NaN
    B  ccc  NaN  NaN   NaN

Применение прокрутки фрейма и возврат Series

Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned

In [163]: df = pd.DataFrame(data=np.random.randn(2000, 2) / 10000,
   .....:                   index=pd.date_range('2001-01-01', periods=2000),
   .....:                   columns=['A', 'B'])
   .....: 

In [164]: df
Out[164]: 
                   A         B
2001-01-01 -0.000144 -0.000141
2001-01-02  0.000161  0.000102
2001-01-03  0.000057  0.000088
2001-01-04 -0.000221  0.000097
2001-01-05 -0.000201 -0.000041
...              ...       ...
2006-06-19  0.000040 -0.000235
2006-06-20 -0.000123 -0.000021
2006-06-21 -0.000113  0.000114
2006-06-22  0.000136  0.000109
2006-06-23  0.000027  0.000030

[2000 rows x 2 columns]

In [165]: def gm(df, const):
   .....:     v = ((((df.A + df.B) + 1).cumprod()) - 1) * const
   .....:     return v.iloc[-1]
   .....: 

In [166]: s = pd.Series({df.index[i]: gm(df.iloc[i:min(i + 51, len(df) - 1)], 5)
   .....:                for i in range(len(df) - 50)})
   .....: 

In [167]: s
Out[167]: 
2001-01-01    0.000930
2001-01-02    0.002615
2001-01-03    0.001281
2001-01-04    0.001117
2001-01-05    0.002772
                ...   
2006-04-30    0.003296
2006-05-01    0.002629
2006-05-02    0.002081
2006-05-03    0.004247
2006-05-04    0.003928
Length: 1950, dtype: float64

Роллинг применяется с DataFrame, возвращающим скаляр

Скользящий Применить к нескольким столбцам, где функция возвращает скаляр (средневзвешенная цена)

In [168]: rng = pd.date_range(start='2014-01-01', periods=100)

In [169]: df = pd.DataFrame({'Open': np.random.randn(len(rng)),
   .....:                    'Close': np.random.randn(len(rng)),
   .....:                    'Volume': np.random.randint(100, 2000, len(rng))},
   .....:                   index=rng)
   .....: 

In [170]: df
Out[170]: 
                Open     Close  Volume
2014-01-01 -1.611353 -0.492885    1219
2014-01-02 -3.000951  0.445794    1054
2014-01-03 -0.138359 -0.076081    1381
2014-01-04  0.301568  1.198259    1253
2014-01-05  0.276381 -0.669831    1728
...              ...       ...     ...
2014-04-06 -0.040338  0.937843    1188
2014-04-07  0.359661 -0.285908    1864
2014-04-08  0.060978  1.714814     941
2014-04-09  1.759055 -0.455942    1065
2014-04-10  0.138185 -1.147008    1453

[100 rows x 3 columns]

In [171]: def vwap(bars):
   .....:     return ((bars.Close * bars.Volume).sum() / bars.Volume.sum())
   .....: 

In [172]: window = 5

In [173]: s = pd.concat([(pd.Series(vwap(df.iloc[i:i + window]),
   .....:                 index=[df.index[i + window]]))
   .....:                for i in range(len(df) - window)])
   .....: 

In [174]: s.round(2)
Out[174]: 
2014-01-06    0.02
2014-01-07    0.11
2014-01-08    0.10
2014-01-09    0.07
2014-01-10   -0.29
              ... 
2014-04-06   -0.63
2014-04-07   -0.02
2014-04-08   -0.03
2014-04-09    0.34
2014-04-10    0.29
Length: 95, dtype: float64

Временные последовательности   

Между временами

Использование индекса между временем

Построение диапазона дат и времени, исключающего выходные и включающего только определенное время

Векторизованный поиск

Агрегирование и построение временных рядов

Превратите матрицу с часами в столбцах и днями в строках в непрерывную последовательность строк в виде временного ряда.
Как переставить в Python фрейм данных pandas?

Работа с дубликатами при переиндексации временного ряда к определенной частоте

Рассчитать первый день месяца для каждой записи в DatetimeIndex

In [175]: dates = pd.date_range('2000-01-01', periods=5)

In [176]: dates.to_period(freq='M').to_timestamp()
Out[176]: 
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
               '2000-01-01'],
              dtype='datetime64[ns]', freq=None)

Слияние   

Документация по слиянию и объединению находится здесь, а по присоединению здесь.

Добавить два кадра данных с перекрывающимся индексом (эмулировать R rbind)

In [177]: rng = pd.date_range('2000-01-01', periods=6)

In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C'])

In [179]: df2 = df1.copy()

В зависимости от конструкции df может потребоваться ignore_index

In [180]: df = df1.append(df2, ignore_index=True)

In [181]: df
Out[181]: 
           A         B         C
0  -0.870117 -0.479265 -0.790855
1   0.144817  1.726395 -0.464535
2  -0.821906  1.597605  0.187307
3  -0.128342 -1.511638 -0.289858
4   0.399194 -1.430030 -0.639760
5   1.115116 -2.012600  1.810662
6  -0.870117 -0.479265 -0.790855
7   0.144817  1.726395 -0.464535
8  -0.821906  1.597605  0.187307
9  -0.128342 -1.511638 -0.289858
10  0.399194 -1.430030 -0.639760
11  1.115116 -2.012600  1.810662

Self Join of a DataFrame

In [182]: df = pd.DataFrame(data={'Area': ['A'] * 5 + ['C'] * 2,
   .....:                         'Bins': [110] * 2 + [160] * 3 + [40] * 2,
   .....:                         'Test_0': [0, 1, 0, 1, 2, 0, 1],
   .....:                         'Data': np.random.randn(7)})
   .....: 

In [183]: df
Out[183]: 
  Area  Bins  Test_0      Data
0    A   110       0 -0.433937
1    A   110       1 -0.160552
2    A   160       0  0.744434
3    A   160       1  1.754213
4    A   160       2  0.000850
5    C    40       0  0.342243
6    C    40       1  1.070599

In [184]: df['Test_1'] = df['Test_0'] - 1

In [185]: pd.merge(df, df, left_on=['Bins', 'Area', 'Test_0'],
   .....:          right_on=['Bins', 'Area', 'Test_1'],
   .....:          suffixes=('_L', '_R'))
   .....: 
Out[185]: 
  Area  Bins  Test_0_L    Data_L  Test_1_L  Test_0_R    Data_R  Test_1_R
0    A   110         0 -0.433937        -1         1 -0.160552         0
1    A   160         0  0.744434        -1         1  1.754213         0
2    A   160         1  1.754213         0         2  0.000850         1
3    C    40         0  0.342243        -1         1  1.070599         0

Как установить индекс и присоединиться

KDB like asof join

Присоединяйтесь с критериями, основанными на значениях

Использование поиска сортируется для слияния на основе значений внутри диапазона

Визуализация   

Познакомтесь с документацией по визуализации.

Make Matplotlib look like R

Setting x-axis major and minor labels

Plotting multiple charts in an ipython notebook

Creating a multi-line plot

Plotting a heatmap

Annotate a time-series plot

Annotate a time-series plot #2

Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter

Boxplot for each quartile of a stratifying variable

In [186]: df = pd.DataFrame(
   .....:     {'stratifying_var': np.random.uniform(0, 100, 20),
   .....:      'price': np.random.normal(100, 5, 20)})
   .....: 

In [187]: df['quartiles'] = pd.qcut(
   .....:     df['stratifying_var'],
   .....:     4,
   .....:     labels=['0-25%', '25-50%', '50-75%', '75-100%'])
   .....: 

In [188]: df.boxplot(column='price', by='quartiles')
Out[188]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4529608e90>

Ввод / Вывод данных   

Сравнение производительности SQL vs HDF5

CSV   

The CSV docs

read_csv in action

appending to a csv

Чтение CSV-фрагмента

Чтение только определенных строк CSV-фрагмента.

Чтение первых нескольких строк фрейма

Чтение сжатого файла, но не с помощью gzip/bz2 (собственные сжатые форматы, которые понимает read_csv).
В этом примере показан файл WinZipped, но это общее применение для открытия и чтения файла в диспетчере контекста.
Смотри здесь

Вывод dtypes из файла

Работа с ошибочными строками

Работа с ошибочными строками II

Чтение CSV с метками времени Unix и преобразование в местный часовой пояс

Запись многострочного индекса CSV без дубликатов записей

Чтение нескольких файлов в один DataFrame

Лучший способ объединить несколько файлов в один DataFrame — это прочитать отдельные кадры один за другим, поместить все в отдельные фреймы в список, а затем объединить фреймы в списке, используя pd.concat():

In [189]: for i in range(3):
   .....:     data = pd.DataFrame(np.random.randn(10, 4))
   .....:     data.to_csv('file_{}.csv'.format(i))
   .....: 

In [190]: files = ['file_0.csv', 'file_1.csv', 'file_2.csv']

In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

Вы можете использовать тот же подход для чтения всех файлы, соответствующих шаблону. Вот пример использования glob:

In [192]: import glob

In [193]: import os

In [194]: files = glob.glob('file_*.csv')

In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

Наконец, эта стратегия будет работать и с другими функциями pd.read_*(...), описанными в io docs.

Разбор компонентов даты в несколько столбцов

Разбор компонентов даты в нескольких столбцах выполняется быстрее, если описан формат:

In [196]: i = pd.date_range('20000101', periods=10000)

In [197]: df = pd.DataFrame({'year': i.year, 'month': i.month, 'day': i.day})

In [198]: df.head()
Out[198]: 
   year  month  day
0  2000      1    1
1  2000      1    2
2  2000      1    3
3  2000      1    4
4  2000      1    5

In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d')
   .....: ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'],
   .....:                                           x['month'], x['day']), axis=1)
   .....: ds.head()
   .....: %timeit pd.to_datetime(ds)
   .....: 
9.41 ms +- 596 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
2.76 ms +- 60.8 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

Пропустить строку между заголовком и данными

In [200]: data = """;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....: ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....: ;;;;
   .....: date;Param1;Param2;Param4;Param5
   .....:     ;m²;°C;m²;m
   .....: ;;;;
   .....: 01.01.1990 00:00;1;1;2;3
   .....: 01.01.1990 01:00;5;3;4;5
   .....: 01.01.1990 02:00;9;5;6;7
   .....: 01.01.1990 03:00;13;7;8;9
   .....: 01.01.1990 04:00;17;9;10;11
   .....: 01.01.1990 05:00;21;11;12;13
   .....: """
   .....: 
Вариант 1: для пропуска передать строки явно
In [201]: from io import StringIO

In [202]: pd.read_csv(StringIO(data), sep=';', skiprows=[11, 12],
   .....:             index_col=0, parse_dates=True, header=10)
   .....: 
Out[202]: 
                     Param1  Param2  Param4  Param5
date                                               
1990-01-01 00:00:00       1       1       2       3
1990-01-01 01:00:00       5       3       4       5
1990-01-01 02:00:00       9       5       6       7
1990-01-01 03:00:00      13       7       8       9
1990-01-01 04:00:00      17       9      10      11
1990-01-01 05:00:00      21      11      12      13
Вариант 2: прочитать имена столбцов, а затем данные
In [203]: pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')

In [204]: columns = pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns

In [205]: pd.read_csv(StringIO(data), sep=';', index_col=0,
   .....:             header=12, parse_dates=True, names=columns)
   .....: 
Out[205]: 
                     Param1  Param2  Param4  Param5
date                                               
1990-01-01 00:00:00       1       1       2       3
1990-01-01 01:00:00       5       3       4       5
1990-01-01 02:00:00       9       5       6       7
1990-01-01 03:00:00      13       7       8       9
1990-01-01 04:00:00      17       9      10      11
1990-01-01 05:00:00      21      11      12      13

SQL   

Ищите документацию по SQL здесь.

Чтение из баз данных с SQL

HDFStore   

Докментация по HDFStores здесь.

Простые запросы с индексированием по времени

Управление разнородными данными с использованием связанной иерархии нескольких таблиц

Объединение на диске таблиц с миллионами строк

Как избежать несоответствий при записи в хранилище из нескольких процессов / потоков

Дедупликация большого хранилища кусками, по сути, рекурсивная операция сокращения. Показывает функцию для получения данных из CSV-файл и создание набора по частям с разбором по дате.
Смотри здесь

Создание фрагмента набора из файла CSV

Присоединение к набору с созданием уникального индекса

Работа с большими данными

Чтение нескольких файлов и формирование во время добавлении глобального уникального индекса

Группировка в наборе HDFS с низкой плотностью групп

Группировка в наборе HDFS с высокой плотностью групп

Иерархические запросы в хранилище HDFS

Подсчет с HDFStore

Обработка исключений HDFStore

Установка min_itemsize для строк

Использование ptrepack для создания полностью отсортированного индекса в наборе

Хранение атрибутов для группового узла:

In [206]: df = pd.DataFrame(np.random.randn(8, 3))

In [207]: store = pd.HDFStore('test.h5')

In [208]: store.put('df', df)

# you can store an arbitrary Python object via pickle
In [209]: store.get_storer('df').attrs.my_attribute = {'A': 10}

In [210]: store.get_storer('df').attrs.my_attribute
Out[210]: {'A': 10}

Двичные файлы   

Pandas принимает массивы записей NumPy, если вам нужно читать в двоичном виде файл, состоящий из массива структур Си. Например, учитывая эту программу C в файле с именем main.c, скомпилированным с помощью gcc main.c -std = gnu99 на 64-битный компьютере.

#include <stdio.h>
#include <stdint.h>

typedef struct _Data
{
    int32_t count;
    double avg;
    float scale;
} Data;

int main(int argc, const char *argv[])
{
    size_t n = 10;
    Data d[n];

    for (int i = 0; i < n; ++i)
    {
        d[i].count = i;
        d[i].avg = i + 1.0;
        d[i].scale = (float) i + 2.0f;
    }

    FILE *file = fopen("binary.dat", "wb");
    fwrite(&d, sizeof(Data), n, file);
    fclose(file);

    return 0;
}

Следующий скрипт Python будет читать двоичный файл 'binary.dat' в DataFrame pandas, при этом каждый элемент структуры соответствует столбцу фрейма:

names = 'count', 'avg', 'scale'

# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = 'i4', 'f8', 'f4'
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},
              align=True)
df = pd.DataFrame(np.fromfile('binary.dat', dt))

Note

В зависимости от архитектура машины, на которой был создан файл, смещения элементов структуры могут отличаться. Для общего хранения данных файл с «сырыми» данными в двоичном формате испольховать не рекомендуется, так как кроссплатформенность в таком случае отсутствует. Мы рекомендуем либо HDF5, либо msgpack. Оба поддерживаются средствами ввода / вывода Pandas.

Вычисления   

Численное интегрирование временного ряда (на основе выборки)

Correlation   

Часто бывает полезно получить нижнюю (или верхнюю) треугольную форму корреляционной матрицы, рассчитанной DataFrame.corr(). Это может быть достигнуто путем передачи логической маски where следующим образом:

In [211]: df = pd.DataFrame(np.random.random(size=(100, 5)))

In [212]: corr_mat = df.corr()

In [213]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool), k=-1)

In [214]: corr_mat.where(mask)
Out[214]: 
          0         1         2         3   4
0       NaN       NaN       NaN       NaN NaN
1 -0.018923       NaN       NaN       NaN NaN
2 -0.076296 -0.012464       NaN       NaN NaN
3 -0.169941 -0.289416  0.076462       NaN NaN
4  0.064326  0.018759 -0.084140 -0.079859 NaN

Аргумент method в DataFrame.corr позволяет дополнительно определить способ вычисления корреляции. Здесь вычисляется корреляуионная матрица расстояний для объекта DataFrame.

In [215]: def distcorr(x, y):
   .....:     n = len(x)
   .....:     a = np.zeros(shape=(n, n))
   .....:     b = np.zeros(shape=(n, n))
   .....:     for i in range(n):
   .....:         for j in range(i + 1, n):
   .....:             a[i, j] = abs(x[i] - x[j])
   .....:             b[i, j] = abs(y[i] - y[j])
   .....:     a += a.T
   .....:     b += b.T
   .....:     a_bar = np.vstack([np.nanmean(a, axis=0)] * n)
   .....:     b_bar = np.vstack([np.nanmean(b, axis=0)] * n)
   .....:     A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean())
   .....:     B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean())
   .....:     cov_ab = np.sqrt(np.nansum(A * B)) / n
   .....:     std_a = np.sqrt(np.sqrt(np.nansum(A**2)) / n)
   .....:     std_b = np.sqrt(np.sqrt(np.nansum(B**2)) / n)
   .....:     return cov_ab / std_a / std_b
   .....: 

In [216]: df = pd.DataFrame(np.random.normal(size=(100, 3)))

In [217]: df.corr(method=distcorr)
Out[217]: 
          0         1         2
0  1.000000  0.199653  0.214871
1  0.199653  1.000000  0.195116
2  0.214871  0.195116  1.000000

Timedeltas   

Timedeltas — интервалы времени, например, день, час, минута, секунда. Они могут быть как положительными, так и отрицательными.

Документация по Timedeltas находится здесь.

Использование timedeltas

In [218]: import datetime

In [219]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))

In [220]: s - s.max()
Out[220]: 
0   -2 days
1   -1 days
2    0 days
dtype: timedelta64[ns]

In [221]: s.max() - s
Out[221]: 
0   2 days
1   1 days
2   0 days
dtype: timedelta64[ns]

In [222]: s - datetime.datetime(2011, 1, 1, 3, 5)
Out[222]: 
0   364 days 20:55:00
1   365 days 20:55:00
2   366 days 20:55:00
dtype: timedelta64[ns]

In [223]: s + datetime.timedelta(minutes=5)
Out[223]: 
0   2012-01-01 00:05:00
1   2012-01-02 00:05:00
2   2012-01-03 00:05:00
dtype: datetime64[ns]

In [224]: datetime.datetime(2011, 1, 1, 3, 5) - s
Out[224]: 
0   -365 days +03:05:00
1   -366 days +03:05:00
2   -367 days +03:05:00
dtype: timedelta64[ns]

In [225]: datetime.timedelta(minutes=5) + s
Out[225]: 
0   2012-01-01 00:05:00
1   2012-01-02 00:05:00
2   2012-01-03 00:05:00
dtype: datetime64[ns]

Сложение и вычитание интервалов времени и дат

In [226]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])

In [227]: df = pd.DataFrame({'A': s, 'B': deltas})

In [228]: df
Out[228]: 
           A      B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [229]: df['New Dates'] = df['A'] + df['B']

In [230]: df['Delta'] = df['A'] - df['New Dates']

In [231]: df
Out[231]: 
           A      B  New Dates   Delta
0 2012-01-01 0 days 2012-01-01  0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days

In [232]: df.dtypes
Out[232]: 
A             datetime64[ns]
B            timedelta64[ns]
New Dates     datetime64[ns]
Delta        timedelta64[ns]
dtype: object

Ещё один пример

Значения могут быть установлены в NaT, используя np.nan, аналогично datetime

In [233]: y = s - s.shift()

In [234]: y
Out[234]: 
0      NaT
1   1 days
2   1 days
dtype: timedelta64[ns]

In [235]: y[1] = np.nan

In [236]: y
Out[236]: 
0      NaT
1      NaT
2   1 days
dtype: timedelta64[ns]

Псевдонимы имен осей   

Для глобального определения псевдонимов имен осей можно использовать эти две функции:

In [237]: def set_axis_alias(cls, axis, alias):
   .....:     if axis not in cls._AXIS_NUMBERS:
   .....:         raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
   .....:     cls._AXIS_ALIASES[alias] = axis
   .....: 
In [238]: def clear_axis_alias(cls, axis, alias):
   .....:     if axis not in cls._AXIS_NUMBERS:
   .....:         raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
   .....:     cls._AXIS_ALIASES.pop(alias, None)
   .....: 
In [239]: set_axis_alias(pd.DataFrame, 'columns', 'myaxis2')

In [240]: df2 = pd.DataFrame(np.random.randn(3, 2), columns=['c1', 'c2'],
   .....:                    index=['i1', 'i2', 'i3'])
   .....: 

In [241]: df2.sum(axis='myaxis2')
Out[241]: 
i1   -0.461013
i2    2.040016
i3    0.904681
dtype: float64

In [242]: clear_axis_alias(pd.DataFrame, 'columns', 'myaxis2')

Creating example data   

Для создания фрейма данных, комбинируя некоторые заданные значения, например, как функция expand.grid() в R, можно создать dict<.code>, где ключи — это имена столбцов, а значения — списки данных:

In [243]: def expand_grid(data_dict):
   .....:     rows = itertools.product(*data_dict.values())
   .....:     return pd.DataFrame.from_records(rows, columns=data_dict.keys())
   .....: 

In [244]: df = expand_grid({'height': [60, 70],
   .....:                   'weight': [100, 140, 180],
   .....:                   'sex': ['Male', 'Female']})
   .....: 

In [245]: df
Out[245]: 
    height  weight     sex
0       60     100    Male
1       60     100  Female
2       60     140    Male
3       60     140  Female
4       60     180    Male
5       60     180  Female
6       70     100    Male
7       70     100  Female
8       70     140    Male
9       70     140  Female
10      70     180    Male
11      70     180  Female

Оригинал: Cookbook

Опубликовано Вадим В. Костерин

ст. преп. кафедры ЦЭиИТ. Автор более 130 научных и учебно-методических работ. Лауреат ВДНХ (серебряная медаль).

Оставьте комментарий

Ваш адрес email не будет опубликован.